03-12-2013, 08:07 PM
بابلیان قدیم که پاپیروس نداشتند و به سنگهای مناسب دسترسی کمی داشتند ، برای نوشتن عمدتا از گل رس استفاده میکردند . آنان کتیبه را به وسیله فشردن قلمی ، که نوک آن به شکل متساویالساقین تیزی بود، بر یک لوح گل رس مرطوب نقش میکردند . با کج کردن قلم از حالت قائم ، این امکان وجود داشت که زاویه رأس یا زاویهی مجاور به قاعده مثلث متساویالساقین بر گل رس نقش شود که بدین ترتیب دو نوع نشانه گوه-شکل (میخی) به وجود میآمد. سپس لوح در کورهای پخته میشد تا به درجهای از سختی برسد که در مقابل گذشت زمان مقاوم و به یک سند دائمی بدل شود. بر روی لوحهای میخی که به فاصله زمانی 2000 ق.م تا 200 ق.م تعلق دارند ، اعداد کوچکتر از 60 به کمک دستگاه گروه بندی سادهای به پایه 10 بیان شدهاند ، و جالب آنکه عمل نوشتن اغلب با استفاده از علامت تفریق ساده شده است. علامت تفریق و علایم بکار رفته برای 1 و 10 به ترتیب از چپ به راست عبارتند از :
[ATTACH=CONFIG]1486[/ATTACH]
که در آن علامت به کار رفته برای 1 و دوقسمتی که علامت تفریق را میسازند با استفاده از زاویه رأس مثلث متساویالساقین به دست آمدهاند ، و علامت به کار رفته برای 10 با استفاده از یکی از زوایای مجاور به قاعده حاصل شده است . به عنوان مثالهایی از اعداد نوشتاری که از این علایم در آنها استفاده شده ، داریم :
[ATTACH=CONFIG]1487[/ATTACH]
شمارهای آتیکی (Attic )، یا هرودینی زمانی پیش از قرن سوم قبل از میلاد ظهور یافتند و دستگاه گروهبندی سادهای بر مبنای 10 تشکیل میدهند که از حروف اول نامهای عددی ساخته شدهاند.علاوه بر علایم I ، ∆ ، H، X ، M برای 1 ، 10، 2^10 ، 3^10 ، 4^10 علامت خاصی باری 5 وجود دارد. این علامت خاص شکلی قدیمی از π است ، که حرف اول کلمه پنته (pente {پنج}) است ، و ∆ حرف نخست دکا( deka {ده}) یونانی است . سایر علایم را نیز میتوان به همین نحو توضیح داد . از علامت به کار رفته برای 5 ، اغلب هم به طور منفرد و هم در ترکیب با سایر علائم استفاده میشد تا نمایش عددی کوتاهتر شود. به عنوان مثال در این دستگاه شما داریم:
2857 =ХХГHHHГГ
که در آن میتوان علامت خاص برای 5 را که یکبار تنها و دوبار در ترکیب با سایر علائم ظاهر شده تشخصی داد.
یکی از روشهای عددنویسی آشنا برای ما، عددنویسی به روش رومی است.در گذشتههای دور ، علائم اصلی I،X،C،M برای 1 ، 10 ، 2^ 10 ، 3^10 ، علایم V ، L و D برای 5 ، 50 و 500 افزوده میشوند . اصل تفریق ، که مطابق آن ، وقتی علامتی برای واحد کوچکتر قبل از علامت بکار رفته برای واحد بزرگتر قرار گیرد ، معنی تفاضل این دو واحد را دارد ، فقط به ندرت در دورههای باستان و میانه بکار میرفت. استفاده کاملتر از این اصل در اعصار جدیدتر معمول گردید . به عنوان مثال ، در این دستگاه داریم
1944= MDCCCCXXXXIIII
یا در اعصار جدیدتر با متداول شدن اصل تفریق :
1944=MCMXLIV
در کوششهایی که برای توضیح ریشههای دستگاه اعداد رومی میشود، حدس و گمان نیز وجود دارد. یکی از توضیحات موجهتر که مورد قبول عده زیادی از صاحب نظران در تاریخ لاتین و علم کتیبهخوانی است، این است که I[I]، II، III، IIII از شکل انگشتان بلند شده گرفته شدهاند. علامت X نیز ممکن است ترکیبی از دو V باشد یا شاید از شکل دستها یا انگشتان صلیب شده به ذهن راه یافته باشد ، یا شاید هم ناشی از این عادت رایج بوده باشد که موقع شمارش با پارهخطها ، خطی بر روی گروههای دهتایی میکشیدند.
دستگاههای شمار رمزی
در یک دستگاه شمار رمزی ، بعد از اینکه یک پایه b انتخاب گردید، علایمی برای
[ATTACH=CONFIG]1488[/ATTACH]
اختیار میشود. اگرچه در چنین دستگاهی علایم زیادی باید به حافظه سپرده شود ، نمایش اعداد در این روش فشرده است.
دستگاه شمار یونانی به اصطلاح یونیایی (ionic) ، یا الفبایی ، از نوع رمزی است و میتوان رد آن را تا 450 ق.م پیگیری کرد. این دستگاه در پایه 10 است و در آن از 27 نشانه - 24 حرف الفبای یونانی همراه با علایم حروف منسوخ دیگاما (digamma) ، کوپا (koppa) و سامپی (sampi) - استفاده میشود. گرچه در این دستگاه از حروف بزرگ استفاده میشد و حروف کوچک خیلی دیرتر جانشین آنها گردیدند ف در اینجا دستگاه را با حروف کوچک شرح خواهیم داد. این علایم باید به خاطر سپرده میشدند .
1 آلفا ɑ
2 بتا β
3 گاما γ
4 دلتا δ
5 اپسیلون ε
6 دیگاما (منسوخ)
7 زتا ζ
8 اتا η
9 تتا θ
10 یوتا ι
20 کاپا κ
30 لامبدا λ
40 مو μ
50 نو ν
60 کسی ξ
70 اومیکرون ο
80 پی π
90 کوپا (منسوخ)
100 رو ρ
200 سیگما σ
300 تاو τ
400 اپسیلون υ
500 فی φ
600 خی χ
700 پسی ψ
800 اومگا ω
900 سامپی (منسوخ)
به عنوان مثالهایی از موارد کاربرد این علایم ، داریم
12 = β ι
21 = ɑκ
274 = ζμσ
سایر دستگاههای شمار رمزی عبارتند از هیراتی و دموتی مصری ، قبطی ، هندی ، برهمایی ، عبری، سوری و عربی بدوی . سه تای آخری ، مانند یونانی یونیایی ، دستگاههای شمار رمزی الفبایی هستند.
[i] منسوب به هرودین (Herodian) ، صرف و نحودان یونانی که در حوالی سال 170 پیش از میلاد در رم دستور زبان درس میداد و یکی از آثار معروفش «قاموس زبان یونانی آتن» است.
[ATTACH=CONFIG]1486[/ATTACH]
که در آن علامت به کار رفته برای 1 و دوقسمتی که علامت تفریق را میسازند با استفاده از زاویه رأس مثلث متساویالساقین به دست آمدهاند ، و علامت به کار رفته برای 10 با استفاده از یکی از زوایای مجاور به قاعده حاصل شده است . به عنوان مثالهایی از اعداد نوشتاری که از این علایم در آنها استفاده شده ، داریم :
[ATTACH=CONFIG]1487[/ATTACH]
شمارهای آتیکی (Attic )، یا هرودینی زمانی پیش از قرن سوم قبل از میلاد ظهور یافتند و دستگاه گروهبندی سادهای بر مبنای 10 تشکیل میدهند که از حروف اول نامهای عددی ساخته شدهاند.علاوه بر علایم I ، ∆ ، H، X ، M برای 1 ، 10، 2^10 ، 3^10 ، 4^10 علامت خاصی باری 5 وجود دارد. این علامت خاص شکلی قدیمی از π است ، که حرف اول کلمه پنته (pente {پنج}) است ، و ∆ حرف نخست دکا( deka {ده}) یونانی است . سایر علایم را نیز میتوان به همین نحو توضیح داد . از علامت به کار رفته برای 5 ، اغلب هم به طور منفرد و هم در ترکیب با سایر علائم استفاده میشد تا نمایش عددی کوتاهتر شود. به عنوان مثال در این دستگاه شما داریم:
2857 =ХХГHHHГГ
که در آن میتوان علامت خاص برای 5 را که یکبار تنها و دوبار در ترکیب با سایر علائم ظاهر شده تشخصی داد.
یکی از روشهای عددنویسی آشنا برای ما، عددنویسی به روش رومی است.در گذشتههای دور ، علائم اصلی I،X،C،M برای 1 ، 10 ، 2^ 10 ، 3^10 ، علایم V ، L و D برای 5 ، 50 و 500 افزوده میشوند . اصل تفریق ، که مطابق آن ، وقتی علامتی برای واحد کوچکتر قبل از علامت بکار رفته برای واحد بزرگتر قرار گیرد ، معنی تفاضل این دو واحد را دارد ، فقط به ندرت در دورههای باستان و میانه بکار میرفت. استفاده کاملتر از این اصل در اعصار جدیدتر معمول گردید . به عنوان مثال ، در این دستگاه داریم
1944= MDCCCCXXXXIIII
یا در اعصار جدیدتر با متداول شدن اصل تفریق :
1944=MCMXLIV
در کوششهایی که برای توضیح ریشههای دستگاه اعداد رومی میشود، حدس و گمان نیز وجود دارد. یکی از توضیحات موجهتر که مورد قبول عده زیادی از صاحب نظران در تاریخ لاتین و علم کتیبهخوانی است، این است که I[I]، II، III، IIII از شکل انگشتان بلند شده گرفته شدهاند. علامت X نیز ممکن است ترکیبی از دو V باشد یا شاید از شکل دستها یا انگشتان صلیب شده به ذهن راه یافته باشد ، یا شاید هم ناشی از این عادت رایج بوده باشد که موقع شمارش با پارهخطها ، خطی بر روی گروههای دهتایی میکشیدند.
دستگاههای شمار رمزی
در یک دستگاه شمار رمزی ، بعد از اینکه یک پایه b انتخاب گردید، علایمی برای
[ATTACH=CONFIG]1488[/ATTACH]
اختیار میشود. اگرچه در چنین دستگاهی علایم زیادی باید به حافظه سپرده شود ، نمایش اعداد در این روش فشرده است.
دستگاه شمار یونانی به اصطلاح یونیایی (ionic) ، یا الفبایی ، از نوع رمزی است و میتوان رد آن را تا 450 ق.م پیگیری کرد. این دستگاه در پایه 10 است و در آن از 27 نشانه - 24 حرف الفبای یونانی همراه با علایم حروف منسوخ دیگاما (digamma) ، کوپا (koppa) و سامپی (sampi) - استفاده میشود. گرچه در این دستگاه از حروف بزرگ استفاده میشد و حروف کوچک خیلی دیرتر جانشین آنها گردیدند ف در اینجا دستگاه را با حروف کوچک شرح خواهیم داد. این علایم باید به خاطر سپرده میشدند .
1 آلفا ɑ
2 بتا β
3 گاما γ
4 دلتا δ
5 اپسیلون ε
6 دیگاما (منسوخ)
7 زتا ζ
8 اتا η
9 تتا θ
10 یوتا ι
20 کاپا κ
30 لامبدا λ
40 مو μ
50 نو ν
60 کسی ξ
70 اومیکرون ο
80 پی π
90 کوپا (منسوخ)
100 رو ρ
200 سیگما σ
300 تاو τ
400 اپسیلون υ
500 فی φ
600 خی χ
700 پسی ψ
800 اومگا ω
900 سامپی (منسوخ)
به عنوان مثالهایی از موارد کاربرد این علایم ، داریم
12 = β ι
21 = ɑκ
274 = ζμσ
سایر دستگاههای شمار رمزی عبارتند از هیراتی و دموتی مصری ، قبطی ، هندی ، برهمایی ، عبری، سوری و عربی بدوی . سه تای آخری ، مانند یونانی یونیایی ، دستگاههای شمار رمزی الفبایی هستند.
[i] منسوب به هرودین (Herodian) ، صرف و نحودان یونانی که در حوالی سال 170 پیش از میلاد در رم دستور زبان درس میداد و یکی از آثار معروفش «قاموس زبان یونانی آتن» است.
کسشر هم تعاونی؟!