چیستان -
مزدك بامداد - 01-18-2014
Dariush نوشته: خب اینطور اساسا غیرممکن است بتوان پاسخ این چیستان را داد. البته من هنوز نمیدانم معنای شمارهی پرهامی چیست ولی گمان نکنم تاثیر زیادی داشته باشد!
چیزی که در گام نخست به ویر من میرسد این است که
:
١- همفزود دو شماره، میتواند به ما بگوید که آن دو شماره هر دو جفت /تاک یا یکی جفت و دیگری تاک هستند.
بزبان دیگر، اگر همفزود دو شماره تاک باشد، بیگمان یکی از شماره ها تاک و دیگری جفت است
و اگر همفزود دو شماره جفت باشد یا هردو جفت و یا هردو تاک هستند.
٢- هر چندینه ای از بسشماری شماره های نخست prime درست شده است.:
f.e.:
36=2*2*3*3
۳ - شماره ٢ یکی از شماره های نخست است که همزمان، هر فراورده ای را جفت میسازد.
۴- برخی فراورده ها گویا هستند مانند ۳۵ که فراورده چیزی نمیتواند باشد جز ۵ و ۷ ولی
برخی دیگر میتوانند از چند راه بدست آمده باشند، مانند ۳۶ که هم ۳ در ١٢ هست و هم ۹ در ۴
و هم ١۸ در ٢ ...
---> ۶
۵- از چیستان میتوان در یافت که این فراورده گویا نبوده و آگاهی دیگر که همان همفزود باشد،
زوج و تاک بودن یکی از پایه های فراورده را روشن نموده است
۶- از چیستان به گمان من بر میاید که این فراورده تنها از دو راه میتوانسته بدست آید، چرا که
پس از آگاهی از دانسته های آن فیسلوف، این فیلسوف توانسته یکی از گزینه ها را کنار بنهد.
۷- از چیستان به گمان من چنین بر می اید که همفزود جفت بوده و دو گزینه بجای
مینهاده : هردو شماره جفت و یا هردو شماره تاک، که سپس ، پس از آگاهی از اینکه
فیسلوف دیگر توانسته یکی از گزینه هارا کنار بنهد، این فیلسوف هم توانسته
یکی از گزینه هارا کنار بنهد.
•
تاک = فرد
جفت = زوج
نخست مر = شماره ی نخست = عدد اوَل
همفزود = مجموع
فراورده = حاصل (ضرب)
بسشماری = ضرب ( multiplication )
پارسیگر
چیستان -
Mehrbod - 01-18-2014
pulsar نوشته: افلاتون : سُقرات حاصل ضربِ دو شماره یِ پرهامیِ بزرگتر از 1 و کوچکتر از 100 را به من گفته.
اریستو : به من نیز جمع آن دو شماره را گفته.
افلاتون : نمی توانم آن دو شماره را بیابم.
اریستو : می دانستم که نمی توانی.
افلاتون : می دانستی؟ پس بدان که آن دو شماره را یافتم.
اریستو : پس من نیز آن دو شماره را یافتم.
نیک نیاندیشیدم, ولی آیا دو مَر, ٤ و ١٣ هستند؟
پارسیگر
چیستان -
Theodor Herzl - 01-18-2014
خوندن نوشتههای مزدک گرامی چیستان را ۴ برابر سخت تر میکند!
چیستان -
pulsar - 01-18-2014
Mehrbod نوشته: نیک نیاندیشیدم[١], ولی آیا دو مَر[٢], ٤ و ١٣ هستند؟
پاسخ خود ا با فرنود بیان کنید.
پروانه ی سود جستن از برنامه نویسی رایانه ای را هم نداریم.
چیستان -
Mehrbod - 01-18-2014
pulsar نوشته: درست است.
پروانه ی سود جستن از برنامه نویسی رایانه ای را هم نداریم.
من از برنامهنویسی سود جُستم, ولی نه برای brute force کردن! (:
پروانهیِ بازگویی روش کار هست؟
چیستان -
pulsar - 01-18-2014
Mehrbod نوشته: من از برنامهنویسی سود جُستم, ولی نه برای brute force کردن! (:
پروانهیِ بازگویی روش کار هست؟
روش خودتان را بیان کنید، مشکلی نیست.
این دو فیلسوف برنامه نویسی بلد نیستند.
پاسخ را باید بدون برنامه نویسی پیدا کنیم.
چیستان -
Mehrbod - 01-18-2014
pulsar نوشته: روش خودتان را بیان کنید، مشکلی نیست.
این دو فیلسوف برنامه نویسی بلد نیستند.
پاسخ را باید بدون برنامه نویسی پیدا کنیم.
چشم, ولی بی برنامهنویسی هم همین میشد, تنها کمی زمانبَرتر بود.
pulsar نوشته: افلاتون : سُقرات حاصل ضربِ دو شماره یِ پرهامیِ بزرگتر از 1 و کوچکتر از 100 را به من گفته.
اریستو : به من نیز جمع آن دو شماره را گفته.
افلاتون : نمی توانم آن دو شماره را بیابم.
اریستو : می دانستم که نمی توانی.
افلاتون : می دانستی؟ پس بدان که آن دو شماره را یافتم.
اریستو : پس من نیز آن دو شماره را یافتم.
شیوهیِ فرجامیابی:
١- افلاتون بسشمار (حاصل ظرب) را دارد.
٢- ارستو همفزود را دارد.
٣- ارستو میداند که افلاتون با داستن بسشمار همچنان نمیتواند دو مَر را بیابد.
...
درخورترین نکته اینجا ٣ است که به ما میگوید دو مَر نامبرده نمیتوانند نُخُستمر باشند, زیرا فرآوردهیِ دو نخستمر تنها و تنها به همان دو بخشپذیر خواهد بود, مانند ٥ x ٧ = ٣٥
پس افلاتون مَرهایی را دارد که به بیشتر از یک راه میتوانند فرآورده شوند و برای بدست آوردن همهیِ
آنها ما تنها دو سامهیِ کوچک داریم: همهیِ دو مَرهایی که در بازهیِ ١-١٠٠ بوده و بیش از دو فاکتور داشته باشند:
کد:
# Barâye barresiye noxostmarih (primality):
is_prime = lambda a: all(a % i for i in range(2, a))
در سویِ دیگر, همفزود دو مَر, بگوییم ٨ اینگونه بدست میاید:
٨ = ٧ + ١ —> نادرست, زیرا بازهیِ ما از ١ بزرگتر و نه خود ١ است.
٨ = ٦ + ٢
٨ = ٥ + ٣
٨ = ٤ + ٤
٨ = ٣ + ٥
٨ = ٢ + ٦
٨ = ١ + ٧ —> نادرست
که کُد بدست آوردن این هم میشود:
کد:
import math
def poss(x):
ret = [(a,b) for a in range(2, x) for b in range(2,x) if a + b == x];
return ret[:math.ceil(len(ret)/2)]
که با آمایش ایندو میتوانیم همهیِ مَرهایی که ارستو میتوانسته داشته را برونکشیم:
کد:
>>> hamfozudhâ = [i for i in range(4, 100) if not any(is_prime(a) and is_prime(b) for a, b in poss(i))]
>>> hamfozudhâ
[11, 17, 23, 27, 29, 35, 37, 41, 47, 51, 53, 57, 59, 65, 67, 71, 77, 79, 83, 87, 89, 93, 95, 97]
اکنون در دنباله:
٤- افلاتون پس از اینکه ارستو میگوید میدانستم نمیتوانی در بیاوری, درمیابد که که دو مَر کدام هستند, ولی چگونه؟
در اینجا افلاتون از سخن ارستو درمیابد که دو مری که همفزود ارستو را میتوانند بسازند, در همهیِ چهرههایِ خود بیش از ٣ فاکتور دارند و تنها
٢٤ مَر بالا هستند که این ویژگی را دارند. پس مَری که او در دست دارد یک سامهیِ افزوده میابد:
بسشمار دو مَری که بشوند آنچه او در دست دارند + همفزود دو مَری که بشوند یکی از ٢٤ مَر بالا.
با در دست داشتن این دو افلاتون درجا دو مر را میابد.
٥- افلاتون میگوید که دو مَر را یافته, ارستو پس از آنکه درمیابد افلاتون توانسته دو مَر را بیابد, او هم آنها را پیدا میکند, ولی چگونه؟
در اینجا بایستی از دیدگاه ارستو بنگریم. ارستو یکی از ٢٤ مَر بالا را دارد و هر کُدام از این ٢٤ مَر فهرستی از بسشُمارهایِ شایند در خود دارند. ب.ن. اگر
مَر همفزود در دست ارستو ٢٣ باشد, بسشمارهای شایند خواهند بود:
کد:
23 = (2, 21) 42, (3, 20) 60, (4, 19) 76, (5, 18) 90, (6, 17) 102, (7, 16) 112, (8, 15) 120, (9, 14) 126, (10, 13) 130, (11, 12) 132,
در اینجا همهیِ فهرستهایِ این ٢٤ مَر خواهند بود:
کد:
for hamfozud in hamfozudhâ:
print(hamfozud)
for a, b in poss(hamfozud): print((a,b), a*b, end=', ')
print('\n')
11
(2, 9) 18, (3, 8) 24, (4, 7) 28, (5, 6) 30,
17
(2, 15) 30, (3, 14) 42, (4, 13) 52, (5, 12) 60, (6, 11) 66, (7, 10) 70, (8, 9) 72,
23
(2, 21) 42, (3, 20) 60, (4, 19) 76, (5, 18) 90, (6, 17) 102, (7, 16) 112, (8, 15) 120, (9, 14) 126, (10, 13) 130, (11, 12) 132,
27
(2, 25) 50, (3, 24) 72, (4, 23) 92, (5, 22) 110, (6, 21) 126, (7, 20) 140, (8, 19) 152, (9, 18) 162, (10, 17) 170, (11, 16) 176, (12, 15) 180, (13, 14) 182,
29
(2, 27) 54, (3, 26) 78, (4, 25) 100, (5, 24) 120, (6, 23) 138, (7, 22) 154, (8, 21) 168, (9, 20) 180, (10, 19) 190, (11, 18) 198, (12, 17) 204, (13, 16) 208, (14, 15) 210,
...
که فهرست بسیار ترسناکی میشود, ولی در اینجا ما افلاتون کار ارستو را نیز انجامیده, زیرا زمانیکه افلاتون میگوید دو مَر
را یافتم, بسشمارِ در دست وی بباید نمیتواند یکزمان به دو تا از ٢٤ مر فهرست همفزودها بیانجامد. برای نمونه ما داریم:
11
(2, 9) 18, (3, 8) 24, (4, 7) 28, (5, 6) 30,
17
(2, 15) 30, (3, 14) 42, (4, 13) 52, (5, 12) 60, (6, 11) 66, (7, 10) 70, (8, 9) 72,
پس اگر بسشمار نمونهوار ٣٠ میبود, افلاتون نمیتوانست هرگز درآورد که این ٣٠ از ١١ آمده یا ١٧.
تا اینجا درست, ولی چگونه ارستو پس از اینکه در میابد افلاتون دو مَر را یافته, او هم در دنبال میابد؟ در اینجا تنها و تنها یک راه فرنودین بجا میماند, فهرستِ در دست
ارستو باید بگونهای باشد که بجز یکی از مَرهایِ آن, دیگریها همتایِ دوم یا بیشتری در فهرست داشته باشند, که از آنجاییکه افلاتون هیچکدام از
آنها را نگزیده (همچون ٣٠), پس ناگزیر تنها مَر بجا مانده همانْ بسشمار در دست افلاتون باشد; که در اینجا با یک نگاه سرسری این فهرست ویژه را در بالا میبینیم:
11
(2, 9) 18, (3, 8) 24, (4, 7) 28, (5, 6) [strike]30[/strike],
17
(2, 15) [strike]30[/strike], (3, 14) [strike]42[/strike], (4, 13) 52, (5, 12) [strike]60[/strike], (6, 11) [strike]66[/strike], (7, 10) [strike]70[/strike], (8, 9) [strike]72[/strike],
23
(2, 21) [strike]42[/strike], (3, 20) 60, (4, 19) 76, (5, 18) 90, (6, 17) 102, (7, 16) 112, (8, 15) 120, (9, 14) 126, (10, 13) 130, (11, 12) 132,
27
(2, 25) 50, (3, 24) 72, (4, 23) 92, (5, 22) 110, (6, 21) 126, (7, 20) 140, (8, 19) 152, (9, 18) 162, (10, 17) 170, (11, 16) 176, (12, 15) 180, (13, 14) 182,
29
(2, 27) 54, (3, 26) 78, (4, 25) 100, (5, 24) 120, (6, 23) 138, (7, 22) 154, (8, 21) 168, (9, 20) 180, (10, 19) 190, (11, 18) 198, (12, 17) 204, (13, 16) 208, (14, 15) 210,
35
(2, 33) [strike]66[/strike], (3, 32) 96, (4, 31) 124, (5, 30) 150, (6, 29) 174, (7, 28) 196, (8, 27) 216, (9, 26) 234, (10, 25) 250, (11, 24) 264, (12, 23) 276, (13, 22) 286, (14, 21) 294, (15, 20) 300, (16, 19) 304, (17, 18) 306,
...
پارسیگر
چیستان -
pulsar - 01-18-2014
مزدك بامداد نوشته: ۷- از چیستان به گمان من چنین بر می اید که همفزود جفت بوده
همفزود بی گمان تاک بوده. چرا که بر پایه ی گمان نیرومند گُلدباخ،
هر شماره ی جفت بزرگتر از دو را همواره میتوان به صورت جمع
دو شماره ی نخست نوشت.
چیستان -
Philo - 01-18-2014
البته ارسطو قطعا خالی بسته، چون سقراط 15 سال پیش از به دنیا آمدن ارسطو شهید شده بود.
چیستان -
Mehrbod - 01-21-2014
خرید اسب
سه مردی می خواهند اسبی را بخرند که بهایش ١۰۰ درهم است، ولی هیچکدام به تنهایی پول بسنده ندارند.
مرد نخست به دو دیگر می گوید: اگر یکسوم پولتان را به من بدهید، ١۰۰ درهم من جور می شود.
مرد دوم می گوید: اگر شما یک چهارم پولتان را به من بدهید، پول من ١۰۰ درهم خواهد شد.
سرانجام مرد سوم می گوید: اگر یک پنجم پولتان را به من بدهید، پولم ١۰۰ درهم خواهد شد.
هر مرد، چند درهم دارد؟
---
mm
https://fbcdn-sphotos-b-a.akamaihd.net/hphotos-ak-ash3/1524816_634318106603391_1019932793_n.jpg
پ.ن.
ابوبکر محمد بن حسین کَرَجی (۹۵۳-١۰٢۹) مزدائیکدان و آب شناس، زادهی کرج است. در ری مزدائیک آموخت و سپس راهی بغداد شد. به دنبال آشفتگی های "سیاسی" در بغداد به زادگاه خود بازگشت و نزدیک ٢۰ سال پیش از ابوریحان بیرونی در گذشت. برخی او را کرخی می نامند (زادهی کرخ پیرامون بغداد). کرجی رویکردش به "ریاضی" ِ یونان بود و وارون "ریاضی" دانان آن زمان به "ریاضی" هند کمتر بها می داد. چیستان زیر در یکی از ماتیکانهایِ بجا مانده از کرجی به نام "الکافی فی الحساب"، نوشته شده است.
پارسیگر